Ocular Biologics, Biosimilars, and Drugs for the Eye

Greg A. Caldwell, OD, FAAO
Tracy Offerdahl, PharmD, FAAO
Heart of America
February 12, 2022
Disclosures- Greg Caldwell, OD, FAAO

镬 The content of this activity was prepared independently by me - Dr. Caldwell
镬 Lectured for: Alcon, Allergan, Aerie, BioTissue, Kala, Maculogix, Optovue, RVL, Heru
镬 Advisory Board: Allergan, Sun, Alcon, Maculogix, Dompe, Visus, Eyenovia
镬 Envolve: PA Medical Director, Credential Committee
镬 Healthcare Registries – Chairman of Advisory Council for Diabetes
镬 I have no direct financial or proprietary interest in any companies, products or services mentioned in this presentation – carotenoid scanner owner, Maculogix, Optovue OCT
镬 The content and format of this course is presented without commercial bias and does not claim superiority of any commercial product or service
镬 Optometric Education Consultants - Scottsdale, Minneapolis, Florida (Ponte Verda Beach), Mackinac Island, MI, Nashville, and Quebec City - Owner
The content of this COPE Accredited CE activity was prepared independently by Dr. Offerdahl and Dr. Caldwell.

Dr. Offerdahl does not have direct financial or proprietary interest in companies, products, or services that will be mentioned in this presentation.

The content and format of this course is presented without commercial bias and does not claim superiority of any commercial product or service.
Biologic Drugs

受贿

Biologic therapies include wide range of medical products
- First-generation biologic therapies
 - Vaccines
 - Blood products
 - Stem cell injections
- Today, when people talk about “biologics” they usually mean the second-generation biologic therapy drugs
 - Humira, Remicade, Enbrel

受贿

Biologic therapies
- Cannot be made using a simple chemical reaction
 - Mixing ingredients together in a laboratory, the way conventional drugs are made
- Are made using living organisms
Small molecule drugs are made by adding and mixing together known chemicals and reagents using a series of controlled and predictable chemical reactions (i.e. organic chemistry).

Biologics are made by harvesting the substances produced and secreted by constructed cells (i.e. genetic engineering).
Small molecule drugs can be taken orally
 * Tend to work in the body within cells

Biologics are significantly larger in size
 * Typically injected and interact within the body in the bloodstream or on the surfaces of cells, rather than within the cells

Small molecule drugs
 * Such as aspirin
 * Composed of only 20 to 100 atoms

Small biologics
 * Such as hormones
 * Composed of 200 to 3000 atoms

Large biologics
 * Such as antibodies
 * Composed of 5000 to 50,000 atoms
Biologic Drugs versus Small Molecule Drugs

- **Biologic Drugs**
 - Larger, complex, dynamic structures
 - Diverse populations of molecules
 - Not easily characterized
 - Complicated manufacturing
 - Example: Teprotumumab (Tepezza)

- **Small Molecule Drugs**
 - Synthetic
 - Manufactured using a defined chemical process
 - Smaller and simpler
 - Example: Aspirin
Size and Complexity of Biologic Drugs

Size & Complexity - Small Molecule Drugs & Proteins

<table>
<thead>
<tr>
<th>Size</th>
<th>Small Molecule Drug</th>
<th>Large Molecule Drug</th>
<th>Large Biologic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aspirin</td>
<td>~ 21 atoms</td>
<td>hGH ~ 3000 atoms</td>
<td>IgG Antibody ~ 25,000 atoms</td>
</tr>
<tr>
<td>Bike</td>
<td>~ 20 lbs</td>
<td>~ 3000 lbs</td>
<td>~ 30,000 lbs (without fuel)</td>
</tr>
</tbody>
</table>

https://www.azbio.org/small-molecules-large-biologics-and-the-biosimilar-debate
Making Biologics

A piece of DNA is inserted into a living cell—yeast, bacterial, viral, or mammalian cell

↓

Cell then produces a large amount of a specific molecule (e.g. protein)

↓

Desired molecular isolation (living cells/material removed - only the desired molecules are left)

↓

The isolated molecules become the active ingredient in a biologic drug
Making Biologics

- The molecules in a biologic drug are different from the molecules in most other pharmaceutical products because of their **large size, lack of uniformity**, and **weak chemical bonds**:
 - **Large size and lack of uniformity**
 - The molecules that make up a biologic drug are not uniformly the same, and each molecule typically has tens of thousands atoms
 - **Weak chemical bonds**
 - The chemical bonds that hold these molecules together are relatively weak
 - The molecules can degrade if they are exposed to rapid temperature changes and other factors (percussion)

- Because the molecules that make up biologics are so **sensitive**, manufacturers must follow specific steps to make and package a biologic product
- Even small differences in the manufacturing and packaging process—as well as storage and administration—of a biologic can affect a drug’s ability to work

- So where do biosimilars fit in?!?
What is a Biologic versus Biosimilar?

Biologics
- Isolated from natural sources - human, animal, or microorganism
- “High-tech” treatments; AKA “biotechnology”
- Difference between “regular/chemical drugs” and “biologics”…
 - “Regular/Chemical drugs” – generally synthesized with known chemical structures
 - Can be made easily into oral products, topical products, etc.
 - “Biologics” - very complex mixtures that are NOT easy to identify
 - Very sensitive and easily made unstable; earliest products were only available as an injection, but newer products are ocular preps and oral formulations
 - AKA “reference product”, “innovator product”
- May be used to treat a variety of medical conditions for which **NO OTHER** treatments are available
 - The downside?!? COST
Biosimilars

“Highly similar” to the “reference product” (ie. The biologic/reference or innovator product)

FDA’s approach: The biosimilar company’s research is to PROVE “biosimilarity” between the proposed biosimilar product and the reference product…NOT to independently establish the safety and effectiveness of the proposed product

There are no clinically meaningful differences in terms of:
- Safety
- Purity
- Potency

Why is there no such thing as a GENERIC biologic medication?
- Biologics come from LIVING “things”, so it is not likely to be EXACTLY the same as the reference product! USUALLY differs in terms of inactive ingredients
- Generic medications are chemically synthesized so that the active ingredient is IDENTICAL to the brand name medication
Biosimilars

U.S. FOOD & DRUG ADMINISTRATION
Biologics are Immunomodulating/Immunosuppressive medications!
- HIGH immunogenicity potential because they “tinker” with the immune system & come from nature
- Small molecule drugs have LOW immunogenicity because they are synthetic

Many of the systemic agents for autoimmune disease can cause significant morbidity and mortality!
- Must place PPD before initiating = if PPD+, then initiation of a biologic may convert latent TB to ACTIVE tuberculosis
- Once a biologic is initiated, watch for any signs or symptoms of infection
 - If the patient has a “cold”, “flu”, or is taking antibiotics
 - Then biologic dose must be HELD until the patient is healthy
- FULL work-up for signs/symptoms of infection!
- ASK your patients about meds!
- We will look at the diversity of the side effects with these newer biologics
Where is all started in the eye

Disorders of the blood vessels in the retina are responsible for some of the most common causes of blindness in the world

- Retinopathy of prematurity
 - Important cause of blindness in children in middle-income countries
- Diabetic retinopathy
 - Common cause of blindness in the working-age population of industrialized countries
- Age-related macular degeneration
 - A common cause of blindness in the world

These conditions are caused partly by over-production of a protein called vascular endothelial growth factor (VEGF)

VEGF was discovered in the 1980s and is important in the growth and development of blood vessel in tumor growth

- 1994 it was proven that retinal hypoxia produces VEGF
Treatments for Choroidal Neovascularization (CNV)

Current Anti-VEGF treatments

- **Pegaptanib (Macugen)**
 - First FDA Approved December 2004
 - RNA aptamer
 - AMD

- **Bevacizumab (Avastin)**
 - Humanized full length monoclonal antibody - 2005
 - AMD

- **Ranibizumab (Lucentis)**
 - Humanized monoclonal antibody fragment – 2006
 - AMD, DME, DR, RVO

- **Aflibercept (Eylea)**
 - Fusion protein – 2011
 - AMD, DME, DR

- **Brolucizumab-dbll (Beovu)**
 - Humanized single-chain antibody fragment - 10-8-2019
 - Up to 3 months dosing intervals, most are 4-6 weeks
 - 50% remained 3 months after 1 year
Oxervate™ (cenegermin-bkbj)

- Approved 2018 (August 28, 2018)
- Dompe farmaceutici SpA
- Ophthalmic solution indicated for the treatment of neurotrophic keratitis
- Dosing: Instill 1 drop in affected eye 6 times per day (at 2-hour intervals) for 8 weeks
 - Used as eye drop
 - Not infused or injected
- Storage issues: in the freezer at the pharmacy
 - Patient keeps the individual vials in the fridge – once “actively ready” for use, then it is only stable for 12 hours
- Contraindications
 - None
Escherichia Coli

Oservate™ is produced in Escherichia coli. Image courtesy of NIAID.
Interaction between corneal nerves and epithelial cells/keratocytes mediates corneal homeostasis

Neuromediators provide trophic support to ocular surface tissues (particularly epithelial cells & keratocytes) that:
- Stimulates wound healing
- Maintains anatomic integrity

Corneal nerves stimulate blinking and tear production

Neurotrophins, neuropeptides and growth factors (e.g., NGF) from epithelial cells and keratocyte mediate nerve fibre survival, differentiation and maturation

Tears contain growth factors and nutrients that stimulate epithelial cells

The loss of corneal sensory innervation via damage to the trigeminal nerve reduces release of neuromediators that provide trophic (nutritional) support to the ocular surface tissues, stimulate wound healing and maintain anatomic integrity.

Impairment of corneal sensitivity also affects tear film production and blink rate due to the reduction of trigeminal reflexes.

Impairment of trigeminal innervation leads to decreased corneal epithelium renewal and healing rate, and ultimately the development of NK.

Trigeminal nerve damage leading to NK

- Impaired corneal trigeminal innervation
 - Impairment of trophic supply
 - Corneal epithelial alterations
 - Impairment of corneal healing
 - Spontaneous corneal epithelial breakdown
 - Impairment of trigeminal reflexes
 - Reduced tear film production & blink rate

Neurotrophic keratitis

Etiologies Associated with NK

Ocular
- Herpes (simplex or zoster) infection
- Other infections e.g acanthamoeba
- Chemical or physical burn
- Abuse of topical anaesthetics
- Drug toxicity
- **Chronic ocular surface injury or inflammation**
- Ocular surgery
- Cataract surgery
- LASIK, PRK
- PK and DALK
- Collagen crosslinking for keratoconus
- Vitrectomy for retinal detachment
- Photocoagulation for diabetic retinopathy
- Postsurgical or laser treatment
- Routine laser for proliferative diabetic retinopathy
- Contact lenses
- Orbital neoplasia
- Corneal dystrophies

Central nervous system
- Neoplasm
- Aneurysms
- Stroke
- Degenerative CNS disorders
- Post-neurosurgical procedures
 - For acoustic neuroma
 - For trigeminal neuralgia
- Other surgical injury to trigeminal nerve

Systemic
- Diabetes mellitus
- Leprosy
- Vitamin A deficiency
- Amyloidosis
- Multiple sclerosis

Genetic
- Riley-Day syndrome (familial dysautonomia)
- Goldenhar-Gorlin syndrome
- Mobius syndrome
- Familial corneal hypoaesthesia

DALK=deep anterior lamellar keratoplasty; LASIK=laser in situ keratomileusis; PK=penetrating keratoplasty; PRK=photorefractive keratectomy

NK classification

Stage 1: Mild
(Epithelial changes only without epithelial defect): Epithelial irregularity without frank epithelial defect, tear film instability and symptoms (hyper-aesthesia) with reduced or absent sensations in one or more quadrants of the cornea

Stage 2: Moderate
(Epithelial defect without stromal defect): Frank persistent epithelial defect and corneal hypo-aesthesia/anaesthesia

Stage 3: Severe
(Stromal involvement): Stromal involvement from corneal ulcer to lysis to perforation, with corneal hypo-aesthesia/anaesthesia

Assessment of Corneal Sensitivity is Essential to Confirm NK diagnosis

Corneal sensitivity tests:
- Qualitative (touching cornea with cotton thread)
- Quantitative (corneal aesthesiometer)
- Severity of NK related to severity of corneal sensory impairment

Ocular symptoms

History
Clinical examination and tests

NK suspected

Test corneal sensitivity

Normal
NK unlikely

Reduced
Further tests required

Corneal Sensitivity
Endogenous NGF maintains corneal integrity by three mechanisms

Endogenous Nerve growth factor acts through specific high-affinity (i.e., TrkA) and low-affinity (i.e. p75NTR) nerve growth factor receptors in the anterior segment of the eye to support corneal innervation and integrity.¹

Active ingredient structurally identical to human nerve growth factor produced in ocular tissues

- Naturally occurring neurotrophin is responsible for differentiation, growth, and maintenance of neurons\(^1\)

- The regenerative potential of nerve growth factor (NGF) was discovered by Nobel-prize winning scientists in the early 1950s\(^1\)

- Cenegermin-bkbj, a novel recombinant human nerve growth factor (rhNGF), is **STRUCTURALLY IDENTICAL** to the NGF protein\(^2\)

OXERVATE™ (cenegermin-bkbj) ophthalmic solution 0.002% Weekly Device Kit

- OXERVATE™ is supplied in a weekly carton containing 7 multiple-dose vials*
- A separate weekly Delivery System Kit contains the supplies needed to administer treatment

The Delivery System Kit Contains:
- 7 vial adapters
- 42 pipettes
- 42 sterile disinfectant wipes
- 1 dose recording card
- 1 extra adapter, 3 extra pipettes, 3 extra wipes are included as spares

*Extra drug is available in each vial to take into consideration for loss or spillage during treatment administration
Cenegermin Mimics the Structure of Endogenous NGF in the Ocular Tissues

Cenegermin-bkbj, the active ingredient in the FDA-approved OXERVATE™ (cenegermin-bkbj ophthalmic solution) 0.002% (20 mcg/mL), is structurally identical to the human NGF protein found in ocular tissues.

OXERVATE™ (cenegermin-bkbj) ophthalmic solution 0.002%

Dosing and Administration

Instill 1 drop of OXERVATE™ (cenegermin-bkbj) ophthalmic solution 0.002% in the affected eye(s)

Every 2 hours
Apply 6 times daily
Continue for 8 weeks

Let’s Hear From a Patient

April 7, 2020 - After 1 week

April 21, 2020 - After 3 weeks

May 12, 2020 - After 6 weeks
Study Conclusions

After 8 weeks of treatment, 6 times daily

In the majority of patients across two clinical studies OXERVATE™ (cenegermin ophthalmic solution 0.002%) was well tolerated and more effective than vehicle in promoting complete corneal healing of moderate or severe NK.

Study NGF0212 (REPARO) (N=52 per group) European patients with NK in one eye

Vehicle response rate 33.3%

72.0% completely healed

Study NGF0214 (N=24 per group) U.S patients with NK in one or both eyes

Vehicle response rate 16.7%

65.2% completely healed

Of patients who healed after one 8-week course of treatment...

80%

Remained healed for one year*

*Based on REPARO, the study with longer follow-up

Safety: The most common adverse reaction was eye pain following instillation which was reported in approximately 16% of patients. Other adverse reactions occurring in 1-10% of OXERVATE™ patients and more frequently than in the vehicle-treated patients included corneal deposits, foreign body sensation, ocular hyperemia, ocular inflammation and tearing.

Adverse reactions: very well tolerated

The most common adverse reaction in clinical trials
- eye pain, corneal deposits, foreign body sensation in the eye, ocular hyperemia, swelling of the eye, and increase in tears

Contact lenses (therapeutic or corrective) should be removed before applying cenegermin
- presence of a contact lens may limit the distribution of cenegermin-bkbj onto the corneal lesion
- Lenses may be reinserted 15 minutes after administration.
Thyroid Disease and Thyroid Eye Disease
Normal Thyroid Function

[Diagram showing the hypothalamus releasing TRH, which stimulates the anterior pituitary to release TSH, leading to thyroid gland stimulation and production of T4 and T3 hormones. The T4 is converted to T3, which has systemic metabolic effects.]
Thyroid Dysfunction

What is the most common cause of thyroid dysfunction?

A. Cancer
B. Surgically induced
C. Medication toxicity or side effect
D. Pregnancy
E. Autoimmune disease

In autoimmune disease the body typically produces ______ that attacks itself, this can be systemic or organ specific

* Antibodies, immunoglobulins
Antibodies of Thyroid Dysfunction

✍️ TSH Receptor Antibodies
- Stimulating TSH receptor antibody
 - Thyroid Stimulating Immunoglobulin (TSI)
- Thyroid blocking antibody (TBAb)

✍️ Thyroid Peroxidase Antibodies (TPOAb)
- TPO is found in thyroid follicle cells where it converts the thyroid hormone T4 to T3
- TPOAb contributes to thyroid cellular destruction

✍️ Most autoimmune thyroid dysfunctions have a combination of thyroid antibodies, however depending on which AB is more abundant results in the outcome of the disease
Thyroid Dysfunction

Hyperthyroidism
(Thyrotoxicosis)

- **Primary-autoimmune**
 - Graves
 - Graves-Basedow or von Basedow’s
- **Secondary/Tertiary**
 - Excess thyroid medication for treatment of hypo or goiter
 - Toxic multinodular goiter
 - Toxic adenoma
 - Excess iodine
 - Thyroiditis (inflammatory induced)
 - Excess hormone production ectopic tissue
 - Thyroid carcinoma

Hypothyroidism
(most common organ-specific autoimmune disorder)

- **Primary-autoimmune**
 - Chronic autoimmune thyroiditis
 - Hashimoto's thyroiditis
 - Autoimmune atrophic thyroiditis
 - Primary myxedema
 - Opposite of Graves disease
- **Secondary/Tertiary**
 - Postpartum thyroiditis
 - Lithium medication
 - Pregnancy
 - Surgically induced
 - Disorders of the pituitary gland or hypothalamus
Thyroid Eye Disease

- Thyroid Eye Disease has 2 phases
 - A phase secondary to abnormal thyroid hormone levels
 - Increased or decreased FT3 and FT4 levels
 - Once these levels are normalized, ocular symptoms will resolve
 - Congestive Autoimmune form of Thyroid Eye Disease
 - Active phase: stimulating or blocking TRAb are causing ocular activity
 - Plateau phase: reduced activity
 - Resolution phase: symptoms regress and eyes return to normal
Phase secondary to abnormal thyroid hormone levels (T_3/T_4) (Thyroid Eye Disease)

Hyperthyroidism eye symptoms
- Excess hormone acting on the nerves that supply the eye
- Usually spastic and include staring
- Dryness
- Eyelid retraction

Hypothyroidism eye symptoms
- Deficient hormone causing venous congestion, impaired circulation and fluid stagnation
- Periorbital edema

This form of TED resolves within a few weeks after thyroid hormone levels (FT4 and FT3) are corrected and brought back into the normal range.

The pituitary hormone TSH can stay low or suppressed for many months during the course of treatment for hyperthyroidism and doesn’t mean that the patient is still hyperthyroid.

TSH also lags at least 6 weeks behind thyroid hormone levels and often remains elevated longer in people who have been hypothyroid.

Relying on the TSH level can be misleading and in treating TED.
Congestive Autoimmune form of Thyroid Eye Disease
(Active phase, Plateau phase, Resolution phase)

- Caused by both stimulating and blocking TSH receptor antibodies (TRAb) and also immune system chemicals known as cytokines.
- Secondary targets appear to be TSH receptor antigens (epitopes) located on orbital fibroblasts as well as dermal fibroblasts.
- Active “inflammatory” phase of TED varies:
 - Symptoms resolve quickly although on average the active phase lasts about 12-18 months.
 - TRAb levels are high, patients are smokers, nutrient deficiencies are present, or the patient continues to be exposed to environmental triggers such as excess dietary iodine, the active phase can last as long as 5 years.
 - Avoid any lid, muscle or orbital surgery.
- Plateau phase and Resolution “Passive” phase:
 - An individual may be left with structural changes, such as eye protrusion, eyelid retraction, and in some cases, double vision.
 - There are corrective procedures that can be performed to address these problems.
Similar receptors are found in the skin, fat and muscle of the orbit
You’re in the Know

Normal Values
Thyroglobulin 20 IU/ml
Peroxidase <35 IU/ml
TSI 1.75 IU/ml

It does work!
Lid Retraction

- Scleral show in primary gaze
- Occurs in ~90% of Grave’s patients
 - Excess stimulation of Muller’s muscle
 - Fibrotic inferior rectus
 - Mechanical restriction or infiltration of levator
 - Increased orbital volume causes exophthalmos

- Normal Lid Position
 - Upper lid intersects cornea at the 2 and 10 o’clock positions
 - ~2 mm below the limbus
 - Lower lid coincident or 1-2 mm below the limbus
Eyelid Lag: von Graefe’s Sign

- Immobility or lagging of upper eyelid on downward gaze
- Fibrosis of the inferior rectus muscle may induce lower lid retraction
Conjunctiva

- **Conjunctival and episcleral injection**
 - Especially near the horizontal recti insertions

- **Chemosis**
 - Edema of the conjunctiva and caruncle

- **Superior Limbic Keratoconjunctivitis**
 - 65% correlation between SLK and systemic thyroid disease
 - Rheumatoid arthritis
 - Sjögren’s syndrome
Periorbital Edema

- Inflammation of the subcutaneous connective tissue
- May be first sign of thyroid eye disease
- Greatest in the morning
Infiltrative Orbitopathy (Exophthalmos/Proptosis)

-Thyroid Eye Disease is most common cause of unilateral and bilateral exophthalmos
-The term exophthalmos is reserved for prominence of the eye secondary to thyroid disease
-May need MRI to determine or obvious exophthalmos may be present
-It is permanent in 70% of cases
-Caused by increased volume of the extra ocular muscles
- Lymphocytic infiltration
- Proliferation of fibroblasts
- Edema within the interstitial tissue of the muscle
Infiltrative Orbitopathy
(Exophthalmos/Proptosis)
Infiltrative Orbitopathy
(Exophthalmos/Proptosis)
Treatment of Thyroid Eye Disease

- **Palliative** (hormone imbalance, active, passive)
 - Lubricants
 - Topical anti-inflammatory (Lotemax/Restasis)
 - Prisms

- **Steroids** (active phase)
 - Orals
 - Peri-ocular injections
 - IV with oral steroid taper

- **Orbital radiotherapy** (active phase)

- **Orbital Decompression** (passive phase)
 - Fat removal orbital decompression (FROD)
 - Large orbits
 - Bone removal orbital decompression (BROD)
 - Small orbits
 - Both FROD and BROD

Smoking causes the thyroid eye disease to be more severe
Smoking causes treatments to be less effective
Lid Retraction, Eyelid Lag, Lagophthalmos

- Must treat underlying thyroid dysfunction
- Abnormal hormone level and Active phase
 - Treat the exposure keratitis with lubricants
 - Tape eyelids shut at night
 - Lid weight
 - Moisture chamber at night
 - Antibiotic ointments
- Passive Phase
 - Surgical Management
 - Inferior rectus recession
 - Mullerotomy
 - Recession of lower lid retractors
Lid Retractor Surgery
Conjunctiva, Periorbital edema

- **Topical lubricants**
 - Artificial tears
 - Ointments at night
 - Topical steroids
 - Restasis?
- **Tape eyelids closed at night or use mask**
- **Elevate head at night to decrease lid edema**
- **Oral diuretics Acetazolamide**
- **Oral steroids**
 - 60-80mg/day for 3 months
- **IV steroids**
- **Periorbital steroids**
 - Kenalog last 1 month
Infiltrative Orbitopathy
(Exophthalmos/Proptosis)

❖ Orbital Disease Consult
 ✳ Systemic steroids to reduce inflammation
 ✳ Low dose radiotherapy
 ✳ Surgical orbital decompression
Restrictive Myopathy

Non-surgical (while waiting for stability)
- Teach proper head position to alleviate diplopia
- Prism in spectacle correction (Fresnel or ground in)
- Oral steroids
- Botulinum toxin injection

Surgical Consult
- Recession of the rectus muscle/s involved
- Diplopia in primary gaze, reading gaze or both
- Stable angle of deviation for at least 6 months
- No evidence of active disease
- Binocular vision in at least primary and reading positions
Optic Neuropathy

- **Systemic Steroids**
 - If rapidly progressive and painful in the early stage of the disease
 - Only if no contraindications
 - Prednisolone 80-100mg, expect results within 48hrs. Taper dose and d/c within 3 mo
- **IV Methylprednisolone**
- **Radiotherapy**: if contraindication to steroid
- **Orbital decompression**
Orbital Decompression

- Not effective if no medical treatment
 - Two-wall decompression
 - 3-6 mm retro-placement of the globe
 - Three-wall decompression
 - 6-10mm retro-placement
 - Four-wall decompression
 - 10-16mm retro-placement
February 25, 2019

“Nothing Else Can Be Done”
February 25, 2019
“Nothing Else Can Be Done”
March 1, 2019 (4 days later)
Oral and Topical Steroids
March 1, 2019 (4 days later)
Oral and Topical Steroids
Thyroid eye disease therapy shows promise

Primary Care Optometry News, December 2018

CHICAGO — Teprotumumab, an IGF-1 receptor antagonist antibody, demonstrated improvement of double vision in patients with thyroid eye disease, according to a study presented here.

If approved by the FDA, teprotumumab (Horizon Pharma) would be the first drug with an indication for thyroid eye disease, Raymond S. Douglas, MD, PhD, said at the American Academy of Ophthalmology annual meeting.
If approved by the FDA, teprotumumab (Horizon Pharma) would be the first drug with an indication for thyroid eye disease. Raymond S. Douglas, MD, PhD, said at the American Academy of Ophthalmology annual meeting.

In the phase 2 trial, 42 patients were treated with the study drug and 45 patients made up the placebo control arm. At week 24, which marked the end of the controlled trial, statistically significantly more patients taking the study drug achieved the primary endpoint of improvement in clinical activity score and reduction of proptosis ($P < .001$). Diplopia improvement was “impressive” at week 24, and of the patients with diplopia at baseline who did improve, 70% continued to have that improvement 48 weeks later, Douglas said.

The most reported adverse event was hyperglycemia, which returned to normal after discontinuation of the drug, he said.

“Teprotumumab ... appears to have stable improvement and durability of improving the double vision, proptosis and clinical activity in these patients and appears to reverse the effects of thyroid eye disease,” Douglas said. “The phase 3 trial will also have the added benefit of having a crossover group who will receive open-label therapy if [patients are] nonresponders at week 24, which ... may make this even more universally applicable to patients with long-standing disease.” – by Patricia Halk, ELS

Reference:

Disclosure: Douglas reports no relevant financial disclosures.
Teprotumumab-trbw (Tepezza)

- Horizon Therapeutics – HQ Dublin, Ireland and US based Chicago
- Biologic pharmaceutical
 - Chinese Hamster Ovary
 - Infusion, 8 total, every 3 weeks
- Thyroid eye disease
 - IGR-1 (Insulin like growth factor 1) and TSH receptors are over expressed
- IGF-1 receptor inhibitor monoclonal antibody
 - On the orbital fibroblasts
 - Inhibiting downstream inflammatory cascade
 - Cytokines, hyaluron, leukotriene
 - Differentiation into adipocytes and myofibroblasts
- Phase 2 and published in New England Journal of Medicine
- Phase 3 completed
 - Not published
- PDUFA- March 2020, was approved early in 2020
Teprotumumab-trbw (Tepezza)

https://www.tepezza.com/hcp/tepezza-moa/
Teprotumumab-trbw (Tepezza)

- **Optics and Optic-X Studies**
 - 8 infusions, every 3 weeks, 24 weeks
 - Optics – acute, less than 9 months of disease
 - Optics X – chronic, 12-16 months disease

- **Clinical Activity Score**
 - Spontaneous pain, gaze evoked pain, eyelid erythema, chemosis, inflammation
 - Scale of 7, needed 4 to be in the study

- **Proptosis**
 - Improvement of 2 mm or better

- **Diplopia**
 - Scale of 0, 1, 2, or 3

- **Grave’s Ophthalmopathy -Quality of Life Score**
 - Scale 0-100
Teprotumumab-trbw (Tepezza)

Clinical Activity Score
- Spontaneous pain, gaze evoked pain, eyelid erythema, chemosis, inflammation
- Scale of 7, needed 4 to be in the study
 - 78% improved to 0 or 1, 7% improved 0 or 1 with placebo

Proptosis
- Improvement of 2 mm or better
 - 83% had 2 mm or better, 10% with placebo
 - Average was 3.2 mm at week 24

Diplopia
- Scale of 0, 1, 2, or 3
 - 68% improved 1 point, 29% with placebo

Grave’s Ophthalmopathy - Quality of Life Score
- Scale 0-100
 - 17.28 point improved, 1.80 with placebo
Adverse Reactions

- Very well tolerated

- The most common adverse reactions (incidence ≥ 5% and greater than placebo) are muscle spasm, nausea, alopecia, diarrhea, fatigue, hyperglycemia, hearing impairment, dysgeusia, headache, and dry skin.
Teprotumumab-trbw (Tepezza)

Infusion Reactions (mild/moderate): approximately 4% of patients
- transient increases in blood pressure, feeling hot, tachycardia, dyspnea, headache, and muscular pain
- consideration should be given to premedicating with an antihistamine, antipyretic, or corticosteroid and/or administering at a slower infusion rate.

Hyperglycemia: Increased blood glucose or hyperglycemia
- In clinical trials, 10% of patients experienced hyperglycemia
- Monitor patients for elevated blood glucose and symptoms of hyperglycemia while on treatment with teprotumumab
- Patients with preexisting diabetes should be euglycemic before beginning treatment
Teprotumumab-trbw (Tepezza)

Infusion center

- Go to Horizon website
- Contact Us
- Type in your question
 - Looking for infusion center
Company: Abbvie
- Approved July 2016
- Indication: uveitis
 - Specifically indicated for the treatment of non-infectious intermediate, posterior and panuveitis
- Dosage: subcutaneous injection
 - Recommended dose is 80 mg initial dose
 - Followed by 40 mg every other week starting one week after initial dose

* The significance of this FDA approval is important! Many insurance companies (ex. Medicare) will not pay for “off-label” uses.
Humira™ (adalimumab)

Non-infectious intermediate, posterior and panuveitis

Reason for reduced acuity?
Humira™ (adalimumab)

Monitoring parameters:

🌟 Must place PPD before initiating = if PPD+, then initiation of Humira may convert latent TB to ACTIVE tuberculosis

🌟 Once Humira is initiated, watch for any signs or symptoms of infection…if the patient has a “cold”, “flu”, or is taking antibiotics, then Humira dose must be HELD until the patient is healthy.
Hadlima™ (adalimumab-bwwd)

Biosimilars

Hadlima (Adalimumab-bwwd)

Biologic agent SIMILAR to Humira

What is a “biosimilar” agent?

- Remember what the FDA say about “biosimilars”
Humira™ (adalimumab)
Hadlima™ (adalimumab-bwwd)

WARNING: SERIOUS INFECTIONS AND MALIGNANCY
See full prescribing information for complete boxed warning.

SERIOUS INFECTIONS (5.1, 6.1):
- Increased risk of serious infections leading to hospitalization or death, including tuberculosis (TB), bacterial sepsis, invasive fungal infections (such as histoplasmosis), and infections due to other opportunistic pathogens.
- Discontinue HUMIRA if a patient develops a serious infection or sepsis during treatment.
- Perform test for latent TB; if positive, start treatment for TB prior to starting HUMIRA.
- Monitor all patients for active TB during treatment, even if initial latent TB test is negative.

MALIGNANCY (5.2):
- Lymphoma and other malignancies, some fatal, have been reported in children and adolescent patients treated with TNF blockers including HUMIRA.
- Post-marketing cases of hepatosplenic T-cell lymphoma (HSTCL), a rare type of T-cell lymphoma, have occurred in adolescent and young adults with inflammatory bowel disease treated with TNF blockers including HUMIRA.
Actemra™ (tocilizumab)

INDICATIONS

ACTEMRA is indicated for the treatment of adult patients with moderately to severely active rheumatoid arthritis (RA) who have had an inadequate response to one or more Disease-Modifying Anti-Rheumatic Drugs (DMARDs).

ACTEMRA is indicated for the treatment of giant cell arteritis (GCA) in adult patients.

ACTEMRA is indicated for the treatment of active polyarticular juvenile idiopathic arthritis in patients 2 years of age and older.

ACTEMRA is indicated for the treatment of active systemic juvenile idiopathic arthritis in patients 2 years of age and older.

Let’s qualify this statement
From: http://www.actemra.com/actemra/rheumatoid-arthritis/ra.html
Actemra®
(tocilizumab)
Injection
400 mg/20 mL
(20 mg/mL)
For Intravenous Infusion only after
dilution.
Single-Use Vial; Discard unused portion
ATTENTION PROVIDER: Each patient is
required to receive the enclosed
Medication Guide
No Preservative

Rx only
Genentech
Actemra™ (tocilizumab)

Actemra™ (tocilizumab) - Genetec

- First innovative therapy for GCA in more than 50 years
- Design to speed the development for treatments of serious diseases such as GCA and certain cancers
Actemra™ (tocilizumab)

- Patients were randomized to receive tocilizumab 162 mg weekly injections plus a 6-month and 12-month prednisone-taper compared to controls receiving placebo plus similar steroid taper.
- The preliminary results indicate that patients receiving high dose tocilizumab had superior disease remission at 1 year compared to the steroid-only taper.
- Further investigation from this study will attempt to identify the lowest therapeutic dose of prednisone that can be used in patients also using tocilizumab, the amount of tocilizumab needed to induce remission, and how long patients stay in remission on this therapy.
Tocilizumab

Tocilizumab weekly
+ 26 weeks of prednisone taper
(N=100)

Placebo

Placebo weekly
+ 26 weeks of prednisone taper
(N=50)

Placebo weekly
+ 52 weeks of prednisone taper
(N=51)
Sustained Glucocorticoid-free Remission at Week 52

Rate (

- Tocilizumab weekly + 26 weeks of prednisone taper: 56%
- Tocilizumab every other week + 26 weeks of prednisone taper: 53%
- Placebo weekly + 26 weeks of prednisone taper: Primary outcome 26 weeks P<0.001 (14%)
- Placebo weekly + 52 weeks of prednisone taper: Secondary outcome 52 weeks P<0.001 (18%)
Actemra™ (tocilizumab)

.authorization

★ **Tocilizumab does not directly treat GCA**
 ✔ Reduces steroid load after disease has been adequately treated by steroids and enhances disease remission

★ **Steroids are main therapy**

★ **Studies are ongoing to see:**
 ✔ What is the lowest steroid tapering dose that can be used with tocilizumab
 ✔ Future studies may show tocilizumab as steroid replacement
Tocilizumab (Actemra)

<table>
<thead>
<tr>
<th>WARNING: RISK OF SERIOUS INFECTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>See full prescribing information for complete boxed warning.</td>
</tr>
</tbody>
</table>

- Serious infections leading to hospitalization or death including tuberculosis (TB), bacterial, invasive fungal, viral, and other opportunistic infections have occurred in patients receiving ACTEMRA. (5.1)
- If a serious infection develops, interrupt ACTEMRA until the infection is controlled. (5.1)
- Perform test for latent TB; if positive, start treatment for TB prior to starting ACTEMRA. (5.1)
- Monitor all patients for active TB during treatment, even if initial latent TB test is negative. (5.1)
Biologics

No ocular indication
Olumiant™ (baricitinib) and Rinvoq™ (upadacitinib)

Janus Kinase inhibitors – approved 2018 and 2019

- Indicated for the treatment of adult patients with moderate/severe active rheumatoid arthritis

- Must have failed 1 or more TNF-alpha inhibitors (e.g. Remicade, Humira)

THE HUB-BUB? It is an orally administered medication, as opposed to MOST of the others that are injectables!

- Known as “un-jections”
Family Medicine

- **Aimovig™** (erenumab-aooe)
- **Ajovy™** (fremanezumab-vfrm)
 - Approved 2018
 - Indicated for the PREVENTIVE treatment of migraine in adult patients
 - Calcitonin gene-related receptor antagonist
 - SQ injection
 - Once per month for either product
 - Once every three months for Ajovy™

- ADRs: constipation, injection site reactions
5.2 Constipation with Serious Complications

Constipation with serious complications has been reported following the use of AIMOVIG in the postmarketing setting. There were cases that required hospitalization, including cases where surgery was necessary. In a majority of these cases, the onset of constipation was reported after the first dose of AIMOVIG; however, patients have also presented with constipation later on in treatment. AIMOVIG was discontinued in most reported cases of constipation with serious complications. Constipation was one of the most common (up to 3%) adverse reactions reported in clinical studies [see Adverse Reactions (6.1)].

Monitor patients treated with AIMOVIG for severe constipation and manage as clinically appropriate [see Patient Counseling Information (17)]. The concurrent use of medications associated with decreased gastrointestinal motility may increase the risk for more severe constipation and the potential for constipation-related complications.

5.3 Hypertension

Development of hypertension and worsening of pre-existing hypertension have been reported following the use of AIMOVIG in the postmarketing setting. Many of the patients had pre-existing hypertension or risk factors for hypertension. There were cases requiring pharmacological treatment and, in some cases, hospitalization. Hypertension may occur at any time during treatment but was most frequently reported within seven days of dose administration. In the majority of the cases, the onset or worsening of hypertension was reported after the first dose. AIMOVIG was discontinued in many of the reported cases.

Monitor patients treated with AIMOVIG for new-onset hypertension, or worsening of pre-existing hypertension, and consider whether discontinuation of AIMOVIG is warranted if evaluation fails to establish an alternative etiology.
Biologics

In Studies with the Potential for Eye Care
Galimedix Therapeutics is a Phase 2 neuropharmaceutical company developing novel first-in-class drugs with ground-breaking potential to slow or stop the progression of neurodegeneration and to improve function in glaucoma and dry AMD – leading causes of blindness – and also in Alzheimer’s disease.

https://www.galimedix.com/
Galimedix Therapeutics – Glaucoma and AMD

https://www.galimedix.com/technology/mechanism-of-action
Thank You!

Questions?

Ocular Biologics, Biosimilars, and Drugs for the Eye

Greg Caldwell, OD, FAAO
Tracy Offerdahl, PharmD, Bpharm, FAAO