6 Step Approach to Evaluate the Visual Field

Murray Fingeret, OD, FAAO
Chief, Optometry Section
VA New York Harbor
Brooklyn/St. Albans Campus
Clinical Professor, SUNY College of Optometry
murrayf@optonline.net

6 Steps in Analyzing Visual Field

• Why perform perimetry
 – Measure of glaucomatous damage
 – Method to discover progression
 – Standard of care is to perform perimetry annually for glaucoma or ocular hypertension
 – Retrospective chart review suggests perimetry underused
 • Fremont 2003 AJO
 – 43% > 1 yr interval between fields
 • Coleman 2005 Ophthalmology
 – Medicare review 30% did not have field in prior year

• Fremont 2003 AJO
• Coleman 2005 Ophthalmology

6 Steps in Analyzing Visual Field

• SITA Standard
 – Standard test used with Standard Automated Perimetry (SAP)
 • SITA Fast used only in select situations
 – Greater variability
 • Will detect loss when considerable damage has occurred to optic nerve
 – May underestimate damage in early disease
 • Requires patient attention and focus
 • Significant inter-test variability
 – Multiple tests needed to confirm damage or progression

6 Steps in Analyzing Visual Field

• Right Test
 • Strategy
 – SITA STD vs. SITA Fast vs. Full Threshold
 • Test Stimulus Size
 – Size III vs. Size V
 • Test Pattern
 – 24-2 vs. 30-2 vs. 10-2
 • Eye
 • Age
 – Date of birth correct as used with normative databases

6 Steps in Analyzing Visual Field

• Right Test
 • Pupil Size
 – Be consistent test to test
 – Improved when using serial field analysis
 – Often done dilated
 – > 3 mm
 • Refractive Error
 – Input data correctly
 – Input new data if refraction changes
 – Allow instrument to calculate trial lens
 • If field full and patient at risk, perform FDT or SWAP
6 Steps in Analyzing Visual Field

- Reliability
 - Indices
 - Fixation loss
 - Increase may be due to testing artifact
 - Blind spot not located correctly
 - False positives
 - Best indice
 - As little as 5% could reflect unreliable field
 - False negatives
 - Worst indice
 - Could be due to fatigue or commonly seen when field loss present

Unreliable - False Positives

6 Steps in Analyzing Visual Field

- Reliability
 - Blind spot plotted as absolute scotoma
 - Is there a 0 in blind spot?
 - Indicative as steady fixation
 - Blind spot not averaged over an area
 - Gaze Tracker
 - Excellent Method to monitor fixation and patient performance
 - Crisp gaze tracker indicative of excellent test taker

Excellent Gaze Tracker

6 Steps in Analyzing Visual Field

- Reliability
 - Old standard from Humphrey Full Threshold perimetry
 - Indices flagged at
 - Fixation loss 25%
 - False positive and False negative 33%
 - These cut-offs were based on statistical significance, not clinical significance
 - For false positives, as little as 5-10% may destroy the credibility of the field

6 Steps in Analyzing Visual Field

- Patient Performance
 - Take time to set patient up properly
 - Patient comfortable
 - Patient understands test
 - Tape lid if ptosis suspected
 - Pause test at 6 minutes and sometimes sooner
 - Many patients need break during test
 - Patient needs to be observed during test
 - Many patients back away slightly leading to trial lens defect
 - Be careful using 1st test performed
 - Diffuse loss common
6 Steps in Analyzing Visual Field

• Probability Plots
 – Compare total to pattern deviation plots
 – Comparison using age related normative database
 – Examine pattern of depressed plots
 • Widespread vs. Localized
 • One hemifield or both hemifields
 • Number of points
 • Location of depressed points
 • Severity of depressed points

• Widespread vs. Localized
• One hemifield or both hemifields
• Number of points
• Location of depressed points
• Severity of depressed points

• Greater number of points on Total side usually indicates cataract though other conditions can also cause this
• Not usually glaucomatous
• Greater number of points on Pattern side usually indicate unreliable field
 – Rule does not apply to SWAP or FDT tests
 – Beware that probability points can be flagged even when gray scale appears clean
 • Factor of SITA Algorithm

• Pattern plots associated with glaucomatous loss
 • Effect of cataract or other field depression subtracted
 – Beware that grayscale and probability with SITA do not always agree
 • SITA uses same shadings as Full Threshold
6 Steps in Analyzing Visual Field

• Global Indices
 – Mean Deviation (MD)
 • Average loss for entire field with weighting of
 points closest to fixation
 • Can not recognize pattern of loss from number
 – When negative, could be due to anything from cataract to
 scar to glaucoma
 • If significant, a p value if provided telling how often
 value will occur in a normal population

• Pattern Standard Deviation (PSD)
 • Measure of local loss
 – Higher PSD indicated greater localized loss up until
 approximately -12 dB
 – As glaucoma gets worse effecting both fields, PSD
 declines

• Glaucoma Hemifield Test (GHT)
 • Evaluates asymmetry between superior of inferior fields
 • Clusters of points are evaluated against a normative
 database
 • Clusters based upon RNFL anatomy
 • Printout reads Outside Normal Limits, Borderline or Within
 Normal Limits
 • Also may read as General Reduction in Sensitivity,
 Abnormally High Sensitivity

• RNFL Pattern of Field Loss
 – What is the earliest indicator of glaucoma
 – GHT Outside Normal Limits along with Cluster of 3 points
 flagged with one of the points at
 the P < 1% level
 – Should be repeatable

• RNFL Pattern of Loss
 – Not all RNFL pattern due to glaucoma
 • Altitudinal defect
 • Watch for artifacts such as trial lens or lid defects
 • Choriotretinal scar
 • Neurologic
 • Others
6 Steps in Analyzing Visual Field

- Pattern of Loss
 - Normal
 - Non Diagnostic
 - Glaucoma
 - Other

Visual Field Defects

- Partial arcuate
- Arcuate
- Nasal step
- Vertical Step
- Paracentral
- Central

- Widespread
- Temporal wedge
- Superior depression
- Altitudinal
- Partial peripheral rim
- Peripheral rim

Visual Field Defects

Widespread

- Diffuse visual field loss in all four quadrants
- Glaucoma Hemifield Test (GHT) shows general reduction in sensitivity or
 - Mean Defect (MD) < 5%
- Pattern standard (PSD) or Corrected Pattern Standard Deviation (CPSD) not flagged
- Majority of abnormal points on total deviation plot not abnormal on pattern deviation plot

Visual Field Defects

Arcuate

- Visual field loss in nerve fiber bundle area
- Extends across contiguous points
- Goes from blind spot to at least one point outside 15° adjacent to nasal meridian
Visual Field Defects

- **Partial Arcuate**
 - VF loss in nerve fiber bundle
 - Extends incompletely from blind spot to nasal meridian
 - Defect generally contiguous with either blind spot or nasal meridian
 - Must include one location in temporal field

- **Nasal Step**
 - Visual field loss limited to nasal horizontal meridian
 - At least one abnormal point at or outside 15° on meridian
 - Can not include more than one significant point in nerve fiber bundle on temporal side
Visual Field Defects
Vertical Step
• Limited visual field loss that respects vertical meridian
• Includes at least two abnormal points at or outside 15° along vertical meridian

Visual Field Defects
Altitudinal
• Severe visual field loss in entire superior or inferior hemifield
• Respects horizontal midline
• Majority of points involved within the hemifield
• Entire horizontal line adjacent to meridian involved

Visual Field Defects
Superior Depression
• Two or more points reduced in superior region
Visual Field Defects

Temporal Wedge
- Visual field defect temporal to blind spot

Central
- Visual field loss in macula region
- Foveal threshold reduced to $P < 5\%$

Paracentral
- Relatively small visual field abnormality in nerve fiber bundle
- Not contiguous with blind spot or nasal meridian
- Does not involve points outside 15°
6 Steps in Analyzing Visual Field

• Learning effect is real
 – May take 3 fields to eliminate learning
• Confirm abnormal field in experienced field takers
• Field loss may be the first sign of glaucoma
 – OHTS data showed field loss was first sign in 35%

The Development of Glaucomatous Field Defects

• Learning Effect
 – May take up to 3 fields before learning effect disappears
• Anyone can have a bad day leading to a changing field
• Defect develops in one of 3 ways
 – Scotomas become denser
 – New scotomas develop
 – Scotomas expand

6 Steps in Analyzing Visual Field

• Reaffirm Disease
 – Stage disease
 – Compare optic nerve, RNFL and visual field determining if they correlate
 • Repeat test if needed
 – If field defect already present, did it progress or change?

Classification of Visual Fields in Glaucoma

• Mild Visual Field Loss
 – Mean Deviation Not Worse than -6dB
 – On pattern deviation plots
 • fewer than 25% of points depressed at 5% level and
 • fewer than 15% of points depressed at 1% level
 – No points in central 5° with sensitivity < 15dB
Visual Fields and Glaucoma

- Moderate Visual Field Loss
 - Mean deviation between -6dB and -12dB
 - On pattern deviation plots, fewer than 50% of points depressed below 5% level and fewer than 25% of points depressed below 1% level
 - No point within central 5° with sensitivity of < 0dB
 - Only 1 hemifield containing a point with sensitivity <15dB within 5° of fixation

- Severe Visual Field Loss
 - Mean deviation worse than -12dB
 - On pattern deviation plot, more than 50% of points depressed below the 5% level and more than 25% below 1% level
 - Any point within central 5° with sensitivity of 0 dB
 - Both hemifields containing a point with sensitivity <15dB within 5° of fixation
6 Steps in Analyzing Visual Field

• Reaffirm Defect
 – Compare to previous defect
 • Unchanged
 • Worse
 • Better

• Conventional perimetry is nonselective in stimulating retinal ganglion cells (RGCs)
 – Activates a variety of RGC pathways
 – Any of these pathways may lead to perception of stimulus

Types of pathways
- Magnocellular
 • Motion sensitive
 • Large cells
 • Achromatic
- Parvocellular
 • Most common
 • Color sensitive
 • Small cells
 • Fine detail
- Bistratified RGCs (Koniocellular)
 • Motion insensitive
 • Large cells

New Visual Field Tests

• SWAP and SITA SWAP
 – Bistratified or Koniocellular responses
 – Bleaching yellow background with size 5 blue stimulus
 – Emphasizing one pathway increases sensitivity
 – Detect early loss
 – Longitudinal studies show ability to recognize loss early
 – Correlates with optic disc
 – 8-30% abnormal in OHTN

• Short Wavelength Automated Perimetry (SWAP)
 – Limitations
 • More difficult to perform
 • Lens effects
 • Greater variability

Frequency Doubling Technology (FDT) Perimetry

• Magnocellular RGC responses
• Flicker stimulus imitates motion across retina
• Increased sensitivity to detect early loss
• Correlates with SAP and predicts loss
• Matrix 24-2
 • Sensitivity similar to SITA
 • Threshold variability unrelated to severity

Summary of Visual Field Tests

<table>
<thead>
<tr>
<th></th>
<th>SITA SAP</th>
<th>SITA SWAP</th>
<th>FDT Matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disadvantages</td>
<td>Does not always detect early loss</td>
<td>Variability Cataract effect Limited use</td>
<td>Limited clinical use</td>
</tr>
<tr>
<td>Uses</td>
<td>Baseline VF Following for progression</td>
<td>Early diagnosis Young patients</td>
<td>Early diagnosis</td>
</tr>
</tbody>
</table>
6 Steps in Analyzing Visual Field

- VF test may confirm glaucoma diagnosis
- In some cases, field loss may drive the diagnosis when optic nerve appears normal and IOP elevated
 - Small optic nerve which masks cupping
- All patients should undergo SAP at baseline
- If SAP normal and suspect disease, run selective functional tests like FDT or SWAP

6 Steps in Analyzing Visual Field

- Follow-up Tests
 - In general, perform visual field tests annually
 - Timing of repeat tests may be varied depending upon severity of disease and level of risk

6 Steps in Analyzing Visual Field

- Reimbursement
 - Medicare documentation must include order for test as well as interpretation of the results
 - Describe reliability, changes since last test, assessment
 - Report must be signed
 - Visual field printout initialed and dated
 - ICD 92083 Extended examination

6 Steps in Analyzing Visual Field

- Right test
 - SITA SAP 24-2
 - SITA SAP 10-2
 - FDT Matrix
 - SWAP
- Reliability
 - GHT
 - WNL
 - Borderline
 - Outside Limits
- Pattern of Loss
 - Normal
 - Non Diagnostic
 - Glaucoma
 - Other
- Stage Glaucoma
 - Normal
 - Suspect
 - Mild
 - Moderate
 - Severe