Scleral Lenses 101
-the basics

Julie DeKinder, O.D. FAAO, FSLS
Diplomate, Cornea, Contact Lenses and Refractive Technologies

Overview
• Clinical Indications
• Advantages and Challenges
• Terminology
• Anterior eye anatomy
• Basic design features
• Instrumentation
• Fitting basics – lens selection, fitting, evaluation, follow-up
• Tips and troubleshooting

Clinical Indications
• Vision Improvement
 – Correcting the irregular cornea
 • Corneal Ectasia
 – Primary – Keratoconus, Keratoglobus, Pellucid marginal degeneration (INTACS, CXL)
 – Secondary – post-refractive surgery, corneal trauma
 • Corneal Transplant
 • Corneal Degenerations
 – Normal Cornea
 • Presbyopia, moderate to high corneal astigmatism

Clinical Indications
• Ocular surface protection
 – Dry eye
 – Incomplete lid closure
 – Sjogren’s Syndrome
 – Stevens-Johnson Syndrome
 – RCE / corneal abrasions
 – Graft host disease
 – Infiltrative keratitis

Persistent corneal epithelial defects
• 8/7/17 – epi-off CXL (16 year old male)
 – Being treated for a constant epi defect until 10/6
 – Neomycin/dexamethasone, Zirgan, Ofloxacin, doxycycline, acyclovir, AT, BCL
 – Applied a scleral contact (15.6 diameter)
 – Wore extended wear for 6 days
 – Cont Maxitrol and ofloxacin drops
 – 10/12 – lens removed, epi defect healed with overlying corneal haze

Corneal Abrasion
• Healing response attributed:
 – Oxygenation
 – Moisture
 • Constant tear film
 – Protection of the corneal epithelium
 • Minimal abrasion
 – Allows epithelium to migrate, adhere, and proliferate over the persistent epithelial defect.
Clinical Indications

- Cosmetic/Sports
 - Hand-painted scleral lenses
 - Ptosis
 - Water sports
- Lens failure in other designs

Advantages of Scleral GPs vs Corneal GP

- Centration
 - Fitting a “regular” part of the eye
- Lens Retention
 - Minimal chance of inferior standoff
- Comfort
 - Reduced lid interaction; no corneal interaction
- Vision
 - Masking severe corneal irregularity

Challenges associated with scleral lenses

- Handling
 - Difficult I and R (initially)
 - Apprehensive patients
- Fitting
 - Subtle fit indications
 - Increased chair time
- Physiology
 - Dk/L – Oxygen must diffuse over great distance
 - Long-term effects of scleral lens wear are unknown

Terminology

- Classification
 - Corneo-scleral 12.9mm to 13.5mm
 - Semi-Scleral 13.6 mm to 14.9mm
 - Mini-Scleral 15.0mm to 18.00mm
 - Full-Scleral 18.1mm to 24+

Terminology

<table>
<thead>
<tr>
<th>Lens Type</th>
<th>Description</th>
<th>Definition of seating area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corneal</td>
<td></td>
<td>Less rests entirely on cornea</td>
</tr>
<tr>
<td>Corneo-scleral</td>
<td></td>
<td>Less rests partly on the cornea, partly on the sclera</td>
</tr>
<tr>
<td>Scleral</td>
<td>Mini-Scleral (Len < HBD)</td>
<td>Less rests entirely on the sclera</td>
</tr>
<tr>
<td></td>
<td>Large-Scleral (Len > HBD)</td>
<td></td>
</tr>
</tbody>
</table>

Anatomy and Shape of the Anterior Ocular Surface

- Maximum scleral lens size for normal eye: 24mm
- Scleral Shape Study

Scleral Lens Education Society
June 2013
www.sclerallens.org
Anatomy and Shape of the Anterior Ocular Surface

- Corneal Toricity does not typically extend to sclera
- The ocular surface beyond the cornea is nonrotationally symmetrical
 - Asymmetrical
 - The entire nasal portion typically flatter compared to the rest

Clinical Consequences
- Temporal-Inferior decentration of scleral lenses
 - Inferior decentration
 - Weight/gravity
 - Eyelid pressure
 - Temporal
 - Flatter nasal elevation
- Conjunctival Prolapse

Basic Design Features

- Spherical Design
 - Concentric symmetrical (spherical) scleral lens
 - Non-toric back surface
- Optic Zone
 - Centermost zone
 - Optics/Lens power
 - Anterior surface
 - Back surface
 - Ideally mimics corneal shape
 - Completely vaults cornea

- Spherical Design
 - Concentric symmetrical (spherical) scleral lens
 - Non-toric back surface
- Transition Zone
 - Mid-periphery or limbal zone
 - Creates the sagittal height
 - Can be reserve geometry
 - Completely vaults limbus

- Spherical Design
 - Concentric symmetrical (spherical) scleral lens
 - Non-toric back surface
- Landing Zone
 - Area of the lens that rests on anterior ocular surface
 - Scleral zone or haptic
 - Alignment to provide even pressure distribution is key

- Toric Lens Designs
 - Front Surface Toric
 - Anterior surface front toric optics to improve vision
 - Located on the front surface of the central optical zone
 - Indicated when residual cylinder over-refraction is found
 - Needs stabilization
 - Dynamic stabilization zones or prism ballast
 - LARS
Basic Design Features

• Toric Lens Designs
 — Back Toric Haptics
 • Landing zone is made toric to improve lens fit
 • Does not interfere with central zone of scleral lens
 • Better ocular health
 — Fewer areas of localized pressure
 — Decreased bubble formation
 — Longer wearing time and better patient comfort
 • More frequently needed in larger diameter sclerals

Basic Design Features

• Toric Lens Designs
 — Bitoric both anterior optics and back toric haptics
 • Front surface toric optical power
 • Back surface toric periphery
 • No need for lens stabilization

Basic Design Features

• Multifocal Scleral lens design
 — Simultaneous Multifocal Lens Design
 • Aspheric or concentric
 • Center Near and Center Distance Designs
 — Can adjust near powers
 — Can adjust zone size
 • Not all scleral lens designs have a MF option

Basic Design Features

• Lens Material
 — High(est) Dk lens material; plasma or hydra-PEG
 • Considerably thicker when compared to corneal GP
 — 250 microns to 500 microns
 • Optimum Extreme, Menicon Z
 • Increasing Oxygen transmissibility
 1. high Dk material (Dk > 125)
 2. minimal tear clearance behind the lens (<200)
 3. Reduced center thickness of the lens (<.250)
Basic Design Features

Fitting Basics
• Completely vault the cornea and limbus while aligning to the bulbar conjunctiva.

Fitting Basics
• 1. Diameter
 • HVID
 • <12mm
 – Start with a 16.0 mm or smaller lens
 • >12mm
 – Start with a 16.0 mm or larger lens
 • Diameter of the optical zone and the transition zone chosen roughly 0.2mm larger than the corneal diameter

Fitting Basics
• 1. Diameter
 • Choose a Fitting Set
 • Direct vs Indirect control
 • Laboratory warranty/exchange policy
 • Overall Diameter
 • Larger – more clearance needed, ectasias
 • Smaller – easier to handle, less clearance

Fitting Basics
• 2. Clearance
• 3. Landing Zone Fit
• 4. Lens Edge
• 5. Asymmetrical Back Surface Design
 • Some trial sets are toric back surface
• 6. Lens Power

Fitting Basics
• How can I vault a steep cornea with a flat lens?
 BC much flatter than "K"
 Very steep cornea
Fitting Basics

• 2. Clearance
 – Minimum of ~100 microns
 – Typically aim for 200-300 microns after settling
 – Maximum of 600 (if desired)

 – Base Curve Determination
 • Select an initial base curve that is flatter than the flat k value
 • Use 14 mm chord OCT, measure sagittal depth

Fitting Basics

• Evaluate overall corneal chamber appearance
 – Diffuse beam, low mag, medium illumination
 – Observe centration, areas of bearing, tear lens appearance, look for bubbles

Fitting Basics

Estimate Corneal Clearance

- Lens
- Tear Lens
- Cornea

Fitting Basics

• Evaluate central clearance
 *Compare lens thickness to tear lens thickness and estimate central clearance in microns

Fitting Basics

Look for continuity of the tear lens…

Acceptable clearance:
Too little clearance:

Fitting Basics

Look for continuity of the tear lens…
Fitting Basics

• Change lens base curve/sagittal depth until desired central clearance is reached
 — Considerations:
 • All scleral lenses will settle over a period of hours
 • Expect ~90 to 150 microns settling
 • Aim for 150 to 300 microns after settling
 • Build-in settling time into fitting session ~30 min

UMSL Optometry

Fitting Basics

• UMSL Study:
 — No significant settling after 4 hours of wear
 — Most settling within the 1st hour
 — Large Diameter Scleral settle ~90 microns, slower
 — Mini Scleral ~130 microns, faster

UMSL Optometry

Fitting Basics

• Evaluate remaining corneal chamber
 — Optic Section
 — Sweep limbus to limbus noting tear lens thickness
 — Looking for tears in optic section beyond the limbus and should increase in thickness toward the central cornea
 ** Adequate limbal clearance is critical for an acceptable fit and good tear exchange**

UMSL Optometry

Fitting Basics

• Anterior Segment OCT

Anterior Seg OCT

UMSL Optometry
Fitting Basics

- 3/4. Landing Zone Fit/Edge
- Bulbar conjunctival vessels
- Look for blanching
 - Inappropriate scleral curve alignment
 - Typically indicates PC is too tight
 - Or new toric back surface haptics
- Confirm no lens movement
- Ideal alignment when vessels course unobstructed under the scleral curves

Fitting Basics

- Properly fitted scleral curves
 - Vessels course unobstructed
 - No blanching seen
 - No movement
- Improperly fitted scleral curves
 - Blanching seen in primary gaze
 - Patient discomfort likely
 - Difficult removal
 - Redness after removal

Fitting Basics

- 5. Asymmetrical Back Surface Design
 - Allows for more equal pressure distribution
 - Can help center a inferiorly decentered lens
 - Flat and steep meridian
 - Can adjust either independently
 - Flat meridian is typically marked
 - Will lock into place
 - Usually has a dot for correct insertion
 - Other meridian
 - Can adjust independently
 - Usually has a dot for correct insertion
 - Flat meridian is typically marked
 - Will lock into place
 - Usually has a dot for correct insertion

Fitting Basics

- 6. Lens Power/Over-Refraction
 - Expect close to spherical OR
 - If OR yields significant cylinder check - flexure
 - Do over-keratometry or over-topography
 - Residual Cylinder
 - Front surface toric
 - Usually has a great visual outcome
Fitting Basics

• Design and Order
 – Often lens modifications will need to be made from the best trial lens fit
 – Lab Consultants are helpful
 • Some warranties require consultation when re-ordering

Fitting Basics

Scleral Lens Handling

• Insertion
 – Prepare Lens
 • Large DMV
 • Clean lens, rinse
 – Fill with non-preserved sol
 • 0.9% NaCl inhalation sol
 • Off label: Addipak, Modudose
 • Lacripure, ScleralFil (buffered)
 • Refresh Optive single vials
 • Celluvisc

Is buffered better??

<table>
<thead>
<tr>
<th>Product</th>
<th>Average</th>
<th>Range</th>
<th>Difference</th>
<th>Std. Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>ScleralFil</td>
<td>7.43</td>
<td>7.32-7.52</td>
<td>0.20</td>
<td>0.053</td>
</tr>
<tr>
<td>ClearCare</td>
<td>6.89</td>
<td>6.87-6.92</td>
<td>0.05</td>
<td>0.021</td>
</tr>
<tr>
<td>Lacripure</td>
<td>5.33</td>
<td>5.21-5.45</td>
<td>0.24</td>
<td>0.075</td>
</tr>
<tr>
<td>Modudose</td>
<td>5.17</td>
<td>4.78-5.38</td>
<td>0.40</td>
<td>0.256</td>
</tr>
<tr>
<td>Additex</td>
<td>4.67</td>
<td>4.50-4.82</td>
<td>0.32</td>
<td>0.107</td>
</tr>
</tbody>
</table>

Current accepted pH range of 6.60 to 7.80 for ocular comfort

Fitting Basics

Lens Insertion

• Place paper towels on patient’s lap
• Have patient tuck chin to chest and look straight down
• Have patient hold lower lid
• Clinician hold upper lid
• Insert lens straight onto cornea

Fitting Basics

Scleral Lens Handling
Fitting Basics
Scleral Lens Handling

- Removal
 - Loosen Lens – gently nudge lens
 - Medium DMV
 - placed on inferior portion of lens
 - Hold both lids

Parameter Considerations

- Common Parameter Changes:
 - Sagittal Height
 - Overall diameter (OAD)
 - Optic Zone Diameter (OZD)
 - Base Curve (BC)
 - PC width
 - PC radius of curvature
 - Center Thickness

Parameter Considerations

- Common Parameter Changes:
 - Adjustable to the transition zone
 - Allows clinician to increase or decrease central lens clearance without adjusting base curve or peripheral lens curves
 - Indicate to lab the amount of clearance you want to gain or lose

Patient GH

- Fit in 2013
- OD: 7.50 / -7.00 / 14.5 20/50
- OS: 7.5 / -7.50 / 14.5 20/40
- SLE: central touch in both eyes
 - Increase diameter; increase sagittal height; steepen lens
Patient GH

- New Scleral Lens
 - OD: 7.5 / 14.8 / -7.50 / -1.25 x 013 20/30
 - 1.5 steep limbal zone
 - OS: 7.18 / 14.8 / -8.25 / -0.75 x 162 20/40+
 - 1 step flat limbal zone; 1 step flat scleral zone

Parameter Considerations

- Common Parameter Changes:
 - Overall diameter (OAD) / Optic Zone Diameter (OZD)
 - Can increase or decrease
 - More likely to increase
 - If you need additional central clearance
 - Can increase OZD which will increase OAD
 - If you need more clearance at limbus
 - Can increase OZD which will increase OAD

Parameter Considerations

- OZD changes: often done to improve fit
 - OZD increase without BC compensation
 - OZD: 8.2 mm BC: 7.5 mm
 - OZD: 9.0 mm BC: 7.5 mm

Parameter Considerations

- Increase OZD with BC compensation
 - OZD: 8.2 mm BC: 7.5 mm
 - OZD: 9.0 mm BC: 8.25 mm
 - Increased OZD without increasing sagittal height of lens

Parameter Considerations

- Common Parameter Changes:
 - Base Curve (BC)
 - Typically adjusted during initial fit
 - Flatter base curve to address peripheral lens tightness or excessive central clearance
 - Steeper base curve to increase central clearance or loose periphery
 - If you need to adjust the central clearance, but you are happy with peripheral alignment
 - Adjust sagittal height NOT base curve

Parameter Considerations

- Common Parameter Changes:
 - PC width / PC radius of curvature
 - Make wider or smaller
 - Steeper or flatter
 - Toric Haptics
 - Center Thickness
 - Can increase or decrease
 - Considerations: flexure and edema
Parameter Considerations

• Scleral Curve Changes

Steeper PCs
100 mic
Flatter PCs

Sag: 2.8 mm
Sag: 2.7 mm

Tips for Fitting

• 1. Go flatter than flat K value for initial lens selection
• 2. Use Fluorescein for initial lens selection
 – Use BLUE Light – GET THE BIG PICTURE
 – Use WHITE Light – to evaluate everything else
• 3. Analyze Superior and Inferior lens edges in Primary Gaze
• 4. Try not to make parameter changes at dispensing
• 5. Toric Haptics – spin lens and watch for quick return

Tips for Follow-up

• 1. Ask patient: “How do you take care of your lenses”
• 2. Follow-up should be at least 2 hours after lens insertion
• 3. Paint the front of the lens to look for fluid exchange
• 4. Remove lens and evaluate cornea

Troubleshooting

• Problem: Decreased vision after insertion
 – Often caused by mucin build-up in tear lens
 – Begins ~30min to 4 hrs after insertion

• Possible Solutions
 – Reinsert lens with fresh solution/ use solution mixture
 – Rx lid hygiene
 – Rinse eye prior to insertion
 – Refit with decreased central clearance/better peripheral alignment
 – Change lens material or Lens coating – Hydra-PEG

Troubleshooting

• Decreased Vision after Insertion
 – Patient states vision gets foggy after 2 hours of wear and gradual decreases in clarity over time
 – ~200 microns clearance OD/OS
 – NaFL seeps under lens superiorly OD and 360 OS

Re-order: steeper PC OU

Troubleshooting

• Conjunctival Prolapse

UMSL Optometry
Troubleshooting

Conjunctival Prolapse

- Caused by negative pressure under the lens
- More prominent in patients with loose conjunctival tissue or elderly patients

• Check for neovascularization
• Solution
 - 1. Fit a asymmetrical back surface scleral lens to help alleviate the problem
 - 2. Decrease limbal clearance

Troubleshooting

Conjunctival Prolapse

- Prolapse with tight PC
 - Flatten the PC

Troubleshooting

Conjunctival Prolapse

- Prolapse with peripheral alignment
 - Decrease the limbal clearance
 - 2 ways:
 • Flatten the BC
 • Decrease the reverse curve

Troubleshooting

Problem: Diffuse Corneal Staining on follow-up

- Due to fill media, care systems, AT’s or meds
- Can be difficult to isolate cause
- Can be more significant if tear exchange is low

• Possible solutions:
 - Switch Care systems
 - Rx 0.9%NaCl inhalation solution
 - Completely rinse MPS off lens
 - Confirm compliance with prescribed care

Troubleshooting

A severe case of stain

- 27 yo patient with Keratoconus OU
 • Wearing scleral lens OU – 2014
 • Hx of Corneal Crosslinking OU ('09)

- Presents 7/2017
 • Cc: blurred vision OS> OD
 • using clear care to clean lenses
 • sometimes sleeps in lenses
 • uses Boston Advance to fill lenses prior to insertion

A severe case of stain

- 27 yo patient with Keratoconus OU
 • VA 20/30– OD 20/125 OS
 • SLE: Punctate staining OU, mild corneal edema OS
 • 150 microns clearance OU
 • Adequate limbal clearance
 • No peripheral blanching or impingement

• Plan: educated patient about proper lens care; RTC 1 week fitting
Troubleshooting

- **Problem: Poor surface wetting**
 - MGD can contribute / cause problem
 - Multipurpose Solution (MPS) may cause problems
 - Lens Material

- **Possible Solutions:**
 - Evaluate lid margins/ tear film
 - Prescribe lid hygiene if necessary
 - Change MPS / Lens material
 - Lens Coating – hydra-PEG

39 yo female
PKP OD / KCN OS
Jupiter scleral OU – Tyra 97
Issues with surface wettability
Re-order OD with hydra-PEG
Patient LOVES hydra-PEG – has significantly decreased surface deposits and she does not have to remove to clean during the day.

Case TS: KCN and Fuchs

- **Initial FITTING**
 - HVID 12mm; Pingecula T/N OU
 - 8.4 base curve
 - 4.6 sagittal height
 - 17.0 diameter
 - OR: +3.75 -0.75 x 180 20/25—
 - +4.00 -0.75 x 180 20/30

- **Options to Troubleshoot Pingecula:**
 - Microvault
 - Toric PC

Breathing Easy, for the Patient and Yourself: Contact Lens Vision Rehabilitation for Thirty-six year old Corneal Graft with Edema

Jonathan Chen, OD; Julie DeKinder, OD, FAAO, FSLS
Diplomate AAO, CLCFT
Breathing Easy, for the Patient and Yourself: Contact Lens Vision Rehabilitation for Thirty-six year old Corneal Graft with Edema

Introduction

- Scleral Lens (ScCL)
- Grafts with significantly reduced endothelium cell counts
- Corneal grafts with significantly reduced endothelium cell counts

Differential Diagnoses

- Late graft endothelium failure OD
- Chronic corneal edema OD

Diagnosis:

- SynergEyes
- SynergEyes
- SynergEyes

Rest of series A (2 D) reverse

Results

- Patient reported AWT 5
- OD: unable to obtain reliable scan secondary to edema in clinic
- Specular Microscopy (cells/mm

Testing

- Comparison Pachymetry OS to monitor for edema

Conclusion

- Hypoxia, but this case shows to also be cognizant on elevated changes.
- IOP.
- Tear exchange
- Health, IOP, and edema.

http://www.reviewofcontactlenses.com/article/postkeratoplasty

2/10/2019
Case TS: KCN and Fuchs

• Toric Haptics/Peripheral Curves
 – Steepen the Vertical meridian to relieve pressure in the horizontal
 – Flatten the horizontal meridian
 – Always evaluate the location of the flat meridian markings

• MicroVault
 – Confirm lens design can incorporate microvaults
 – Measure location and size

Troubleshooting

• Problem: Discomfort immediately after insertion
 – Ask patient where discomfort is located
 – Poor peripheral fit – too flat
 – Base curve too flat- central bearing or touch
 – Mucus adhered to back surface of lens

• Possible solutions:
 – Adjust peripheral systems for proper alignment
 – Select steeper base curve
 – Clean inside of bowl daily; prescribe Progent (Menicon) to remove mucus

Case TS: KCN and Fuchs

• Keratoconus and Fuchs! Oh My!
 – At one year follow-up

Troubleshooting

• Problem: Discomfort after several hours of wear
 – Follow-up patient questions
 – Does your eye become red while wearing the lens?
 – Does your eye become red after lens removal?
 – Where is the irritation located?
 – Do you notice any changes in your vision?
 – What solution(s) are you using for lens application?
Troubleshooting

• Problem: Discomfort after several hours of wear
 – Poor peripheral fit (too steep)
 – Lens is too small to support its weight
 – Corneal chamber too small

• Possible solutions:
 – Adjust peripheral systems for proper alignment
 – Increase surface area of scleral curves
 – Increase OAD or corneal chamber size if appropriate

• Problem: Lens hurts upon removal with subsequent difficulty wearing it the next day
 – Poor peripheral fit — scleral compression
 • Causing rebound hyperemia and inflammation

• Possible solutions:
 – Changing Diameter
 – Changing peripheral curves

Patient AB

• History: KCN OU; crosslinking OU
• Lens history: soft toric lenses

Patient AB

• Examination findings
 – MR:
 • OD +0.75 -3.50 x 060 20/70+
 • OS -0.25 -0.75 x 142 20/100+
 – Lens options
 • Specialty Corneal lens
 – Patient attempted to wear and could not adapt
 • Intralimbal design
 – Patient attempted to wear and could not adapt
 • Scleral Lens

Patient AB
Final Thoughts

• Consider mini-scleral / scleral for appropriate patients
 – Select one lab, one design
• First couple fits are the most challenging
• Scleral lenses are not going away
• Consultants are a great resource
• Huge practice building opportunity

UMSL Optometry