The Optics of Strong Lenses
Diane F. Drake, LDO, ABOM, NCLEM, FNAO

Introduction
- Characteristics of lenses
- Vertex Distance
- Tilt/Wrap
- Lens Material
- Coatings
- Communication

Characteristics of Lenses
- Plus lens characteristics
- Minus lens characteristics

Prism
- Light strikes a prism
 - light ray is bent (deviated) toward the base
 - image is displaced toward the apex.

- The greater the difference in thickness between the base and the apex
 - Stronger the power of the prism

- Power of prism is referred to as prism diopter
 - 1 Δ will deviate light 1 cm at 1 M
 - 2 Δ will deviate light 2 cm at 1 M
 - 3 Δ will deviate light 3 cm at 1 M
Convex or plus lenses are made up of two prisms placed base to base.
- Converges light rays
- Creates a real image
- **Magnifies image**
- Center thicker than edge
- Weakens as vertex shortens
- Against motion

Concave or minus lenses are made up of two prism placed apex to apex.
- Diverges light rays
- Creates a virtual image
- **Minifies images**
- Thicker at edge than center
- Strengthens as vertex shortens
- With motion

Characteistics of Contact Lenses
- Float on precorneal tear film
- Move with the eye
- NO vertex distance, so image size is almost the same
 - Power needs compensating more frequently for CL’s than for spectacles

Sphero/cylinder lens characteristics
- Unequal powers and the effects on vision

Analyzing & Interpreting The Prescription
- -2.00 – 2.00 X 180
 - Sphere power always relates to the axis and is everywhere on the lens.
 - Therefore
 - -2.00
 - 180
 - Total cylinder power is 90 degrees away from the axis.
 - Therefore
 - -4.00

Power on Lens Cross
- -2.00 – 2.00 X 180
 - Draw a circle around the lens and you will see where it is thick and where it would be thinner.
 - -2.00
 - 180
Consider shapes to affect edge thickness.

Prism

Properties of minus lenses
Unequal Measure
The condition when the two eyes require a different degree of correction (1.00 or more) but the same kind of correcting lens (+ or -)
The condition may cause vertical prism imbalance at near or cause a difference in the retinal image sizes between the two eyes
May cause problems in distance if not centered vertically

Example Rx:
OD –7.00 D. sphere
OS –3.00 D. sphere

Example Rx:
OD +7.25 sphere
OS +5.25 sphere

Antimetropia
Opposite Measure
The condition when the two eyes require opposite kinds of corrective lenses (+ or -)
The condition may cause vertical prism imbalance at near or cause a difference in the retinal image sizes between the two eyes
May cause problems in distance if not centered vertically
Antimetropia

- Example Rx:
 OD +1.75 sphere
 OS −1.00 sphere

- Example Rx:
 OD −2.25 sphere
 OS +1.50 sphere

Visual discomfort due to:

- Unequal retinal image sizes
- Unequal prism differences at near point
- Unequal focus

Aniseikonia

- "unequal images"
- Anisometropia or antimetropia may result in the condition whereby two unequal images are sent by the eyes to the brain
- More prevalent due to refractive surgeries
- Meridional Aniseikonia
 Normal or less aniseikonia in one meridian and more in another due to high anisometropia in that meridian

Fusion creates blurry image

Aniseikonia

- Aniseikonia is caused by a difference in the magnification power of the two lenses resulting in differences in the retinal image sizes between the two eyes

Distortion

- Minus / Barrel
- No Distortion
- Plus / Pincushion
Aspheric Lenses

Conventional lens Aspheric lens

Using the Rx
O.D. +3.00
O.S. +1.00

Looking left will cause base out prism in OD
Looking right will cause base in prism in OD

Horizontal Imbalance Problems

O.D. +1.00
O.S. -3.00

Base Directions – Plus Lens

Base Direction – Minus Lens
Vertex Distance

- Effective Power
- Compensated Power

Effective Power
Compensated Power

- Change in vertex distance = change in effective power
- Change in effective power means in that compensated power must be ordered

Vertex Distance - Effective Power

Simple formula
- The simple formula for determining the effective power when moved by millimeters is: diopters squared, divided by 1000. That value is multiplied by the millimeter of change.
 \[EP = \frac{D^2}{1000} \times \text{mm of change} \]
- Whereby \(EP \) = Effective power
- \(D^2 \) = dioptric power of lens meridian squared

Vertex Power Compensation

Tilt/Wrap

- How it affects the optics of the lenses
- How it affects the wearer
- How to compensate
Tilt/Wrap Example:

- OU -4.00
- 12° tilt and 15° of wrap
- Compensated Rx
- OD -3.46 -0.42 x 039
- OS -3.46 -0.42 x 141

Coatings

- Higher index = more reflections
 - How reflections affect the wearer

Lens Material

- Index of refraction
- Abbe Value
- Impact
- Other factors

Communication

- Explaining the options to your patients

Lens Material Properties

<table>
<thead>
<tr>
<th>Material</th>
<th>Index</th>
<th>Specific Gravity (g/ml)</th>
<th>Abbe</th>
<th>Refractive</th>
<th>Transmission UVA (300 – 320 nm)</th>
<th>Transmission UVB (320 – 380 nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crown Glass</td>
<td>1.52</td>
<td>2.54</td>
<td>59</td>
<td>4.3</td>
<td>84.3</td>
<td>30.5</td>
</tr>
<tr>
<td>CR-39</td>
<td>1.50</td>
<td>1.32</td>
<td>58</td>
<td>4.0</td>
<td>10.3</td>
<td>0.0</td>
</tr>
<tr>
<td>Trivex</td>
<td>1.53</td>
<td>1.11</td>
<td>43-46</td>
<td>4.4</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Poly</td>
<td>1.58</td>
<td>1.21</td>
<td>29</td>
<td>5.2</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>1.60 (MR6)</td>
<td>1.60</td>
<td>1.22</td>
<td>42</td>
<td>5.3</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>1.60 Glass</td>
<td>1.60</td>
<td>2.60</td>
<td>42</td>
<td>5.3</td>
<td>39.1</td>
<td>0.1</td>
</tr>
<tr>
<td>1.66 (MR7)</td>
<td>1.66</td>
<td>1.35</td>
<td>32</td>
<td>6.2</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>1.67</td>
<td>1.67</td>
<td>1.35</td>
<td>32</td>
<td>6.2</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>1.70 Glass</td>
<td>1.71</td>
<td>2.20</td>
<td>35</td>
<td>6.7</td>
<td>24.6</td>
<td>0.0</td>
</tr>
<tr>
<td>1.80 Glass</td>
<td>1.81</td>
<td>2.66</td>
<td>25</td>
<td>8.2</td>
<td>19.5</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Questions/Answers/Comments

Thank You